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Abstract

The I-D, quasi 1-D and 2-D Euler solvers based

on the method of space-time conservation element
and solution element are used to simulate various

flow phenomena including shock waves, Mach stem,
contact surface, expansion waves, and their inter-

sections and reflections. Seven test problems are
solved to demonstrate the capability of this method

for handling unsteady compressible flows in various
configurations. Numerical results so obtained are

compared with exact solutions and/or numerical so-
lutions obtained by schemes based on other estab-

lished computational techniques. Comparisons show

that the present Euler solvers can generate highly
accurate numerical solutions to complex flow prob-

lems in a straightforward manner without using any

ad hoc techniques in the scheme.

1. Introduction

The method of space-time conservation element

and solution element (to be abbreviated as the

CE/SE method) is a new numerical method devel-

oped by Chang for solving conservation laws. 1-4 It

is different in both concept and methodology from
the well-established traditional methods such as the

finite difference, finite volume, finite element and

spectral methods. It is designed from a physicist's
perspective to overcome several key limitations of
the traditional methods.

Simplicity, generality and accuracy are weighted in
the development of the present method while satis-

fying the fundamental computational requirements.

Its salient properties are summarized briefly as fol-
lows. First, the concepts of conservation clement
and solution element are introduced to enforce both

local and global flux conservation in space and time

instead of in space only. Second, all the dependent
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variables and their spatial derivatives are consid-
ered as individual unknowns to be solved simultane-

ously at each grid point. Third, no approximation
techniques other than Taylor's series expansion, no

monotonous constraints, and no characteristic-based

techniques are used in the design of the scheme. De-
tailed description of this method and the accompa-

nied analysis are referred to Refs. 1 and 2.
Various efficient numerical schemes based on the

CE/SE method have been developed for solving dif-
ferent flow problems, especially the problems in the

presence of shock waves with discontinuous flow
properties. Of those schemes, the one- and two-

dimensional time marching Euler solvers are em-

ployed here to solve problems involving flow phe-
nomena that are more complex than those shown in

Refs. 1 and 2. In addition, a quasi one-dimensional
Euler solver is constructed in this work which is

aimed at dealing with problems in axisymmetric con-
figurations. Comparisons of the computed results

with published data are made to demonstrate the

simplicity and accuracy of the present Euler solvers.

Detailed description of the governing equations

and CE/SE l-D, quasi l-D, 2-D Euler solvers used

in the following numerical tests is referred to Ref. 3,
while numerical results and discussions are described
in details as follows.

2. Numerical Results

2.1) 1-D shock-tube problems

In the 1-D weighted-average Euler a-e scheme used

in the numerical tests for the following four shock-

tube problcms, the parameter e is set as 0.5, whilc
c_ is l excel)t in the first problem where c_ is 4.

a) The Lax problem

The initial conditions in the region [-8, 6] on the
x axis are defined as

p1=0.445, u1=0.6989, pt =3.5277 x<0 (1)

p,.--0.5, u_=0.0, p_ =0.571 x>0 (2)



Thenumericalsolutionat I = 100At obtained by
using the present scheme, under the same compu-

tational conditions (CFL=0.95 and Ax = 0.1) as
those used in Ref. 5, is shown with the exact solu-

tion represented by solid lines in Fig. 1. Compar-
isons were made by Harten 5 to appraise four numeri-

cal schemes, namely, the ROE, LW (Lax-Wendroff),
ULT1, and ULTIC schemes, which were used to

solve the same problem. The last two are the TVNI

finite-difference schemes designed by Harten. The

numerical results plotted in Figs. 2(a)-(d) of Ref. 5

are not reproduced here. Among the four solutions,
the LW solution is the worst showing serious oscil-
lations near the shock discontinuity. In the ROE

solution, the oscillations disappear but up to four

grid points are needed to resolve a shock wave, while
a significant smear is found either near the contact

surface or within the expansion fan. Much improve-

ment is revealed in the ULT1 solution, which re-

solves a shock discontinuity with only 2 grid points
and shows an excellent agreement with the exact so-

lution except in the diffusive region near the contact

surfade. The ULT1 solution closely resembles the
solution plotted in Fig. 1 obtained by use of the
present Euler solver. Iiarten showed that a further

refinement can be obtained by using the higher order
accurate ULT1C scheme.

b) The Sjogreen problem
This problem is taken from Ref. 6, whose initial

conditions are

Pt= 1.0, u_=-2, pl=0.4 0<x<0.5 (3)

pr = 1.0, ur ---- 2, Pr = 0.4 0.5 < X < 1.0 (4)

The initial velocity discontinuity causes two rar-

efaction waves to propagate in opposite directions,

leaving in between a region of high vacuum. It
was mentioned 7 that several Godunov-type schemes

failed in this problem due to the extremely low pres-

sure in the middle region. The CE/SE solution at
t = 50At based on 100 grid points and At = 0.002
is shown in Fig. 2, in which the exact solution is

represented by solid lines. It can be seen that the

present solution agrees very well with the exact so-

lution, without showing negative pressure values in

the middle region. The solution displays an accu-
racy which is comparable to that obtained by Xu et

al. r using a gas-kinetic scheme with 200 grid points.

c) The Shu-Osher problem
Examined in this problem is the interaction of a

moving shock of M, = 3 with a sinusoidal density
wave. s The initial conditions in the region [-5, 5] are
described as

pt=3.857, u1=2.629, pl= 10.333 x<-4 (5)

Pr = 1 + 0.2sin 5x, u_ = 0, p_ = 1 otherwise (6)

This problem does not have an exact solution.
Several upwind schemes have been used to solve this

problem to compare their abilities in resolving the
peaks appeared in the solution. 9 The CE/SE solu-

tion at t=l.8 obtained by using 800 grid points with

At = 0.0015 (CFL=0.582) is shown in Fig. 3. The
present solution is comparable to those obtained in
Ref. 9 by using the TVD1 and TVD2 schemes with

the same number of grid points.

d) The Woodward-Colella problem
This problem, concerning the interaction of two

blast waves in a close-ended tube, was proposed by
Woodward and Colella without an exact solution.I°

The initial conditions are

Pt = 1.0, ut=0, Pl= 1000 x<0.1 (7)

Pm = 1.0, u,,,=O, p,,=0.01 0.1 <x<0.9 (8)

p,.= 1.0, u,. =0, p,. = 100 0.9<x< 1.0 (9)

The two clads are at. x = 0 and x = 1 where the re-

flecting boundary conditions are imposed. Detailed

reflecting boundary conditions used in the present

scheme are referred to Ref. 4. The CE/SE so-

lution at t=0.038 based on 800 grid points with
At = 1.25 x 10-5(CFL=0.3524) is shown in Fig. 4.
The flowfield at. t=0.0a8 contains three contact sur-

faces and two shock waves. It can be seen that the

contact surfaces are much smeared than the shock

discontinuities. A comparison with the numerical

solutions obtained by using AUSM +, Roe, Van leer,
AUSMDV and AUSM+-w splitting schemes for the

same problem shown in Fig. 5 of Ref. 11 reveals that

the CE/SE solution is at least of the same accuracy.

It has been demonstrated that the present 1-D Eu-
let solver can generate highly accurate solutions to

shock-tube problems involving various discontinu-

ities, even though it does not need the implement
of monotonous restraints, TVNI, and entropy con-

ditions as did in Ref. 5. This simple scheme can

be used without difficulty to solve any 1-D problems
governed by Euler equations.

2.2) A quasi 1-D nozzle flow

An axisymmetric nozzle with cross-sectional area

A(x) = 1.398 + 0.347tanh(0.Sx - 4) described in
Refs. 5 and 12 is reconsidered here. Numerical solu-

tions obtained by use of the quasi I-D Euler solver
for CFL=0.9 with 20 and 32 grid points are shown

in Figs. 5 and 6, respectively. The present solution

with 20 grid points is at least as good as those ob-

tained by ROE and ULT1 schemes shown in Fig. 6

of Ref. 5 with the same number of grid points, wlfile



thepresentsolutionwith 32grid point.sis better
thantheULT1solutionwith50gridpoints.

2.3) 2-D supersonic flow past a step

Consider the supersonic channel flow past a step

depicted in Fig. 7(a). The flow exhibits complicated
phenomena which include Mach stem, slip surface,
shock wave, expansion fan, and their interactions

and refections. This is a standard benchmark prob-
lem in the literature. It was used to test ttarten's

TVNI ULT1C scheme, s Giannakouros and Karni-

adakis' spectral element-FCT method, lu and Van
Leer's ultimate conservative difference scheme, a4 It

was also adopted by Woodward and Colella 1° to

compare the accuracy of different numerical meth-

ods in handling a shock discontinuity. This problem

is solved again here to demonstrate the robustness
of the CE/SE method.

The 2-D weighted-average Euler a-c scheme with
-- 0.5 and c_ = 1 is used in this numerical test. The

grid distribution shown in Fig. 7(b) indicates that
no grid point is placed at the upper corner of the

step to avoid the singular flow behavior there. The
freestream condition is set at the inlet, while the

condition at the exit is extrapolated from the inte-

rior. The reflective boundary condition is imposed

on solid walls. Detailed description of boundary con-
ditions can be found in Ref. 3.

The density contours in the solutions obtained by
the present Euler solver with 61x21, 121x41 and

241x81 grid points are shown in Fig. 8. Similar

contour plots are displayed in Figs. 7(a)-(g) of Ref.
10 based on six selected numerical schemes. Accord-

ing to Ref. 10, the ranking of these six methods in

terms of accuracy is as follows: PPM(both PPMLR
and PPMDE), MUSCL, ETBFCT, BBC, MacCor-
mack's scheme, and Goduno_c's scheme.

Comparisons under the same computational con-

ditions (CFL=0.8, At = 0.0025 for 241x81 grid)
show that the present solution is as good as those
obtained by the accurate MUSCL and PPMDE
schemes and is much better than Godunov's solu-

tion. A direct comparison cannot be made with
other mentioned schemes because of their different

time step sizes and CFL numbers. The Mach stem,
triple point, slip surface, expansion fan at the cor-
ner, and the interaction between the reflected shock

with rarefaction waves are accurately simulated in
the present numerical solutions.

2.4) A 2-D blast flowfield

Considered here is a blast flowfield generated by
an open-ended cylindrical shock tube, which was

simulated in Ref. i5 using a TVD finite volume

method with numerical techniques for controlling ar-
tificial compressibility and dissipation. The flowfield

involves complicated phenomena including vortex,

blast wave, rarefaction wave, normal shock and their

mutual interactions. The early time development of
vortex and shock diffraction and the subsequent flow

evolution were simulated in Ref. 15 up to 1.5 msec
to show a fair comparison with experimental data.

This problem is solved here on cartesian coordinates
using the CE/SE method to demonstrate its versa-

tility.

The two-dimensional shock tube configuration

adopted for numerical computation is depicted in
Fig. 9, in which the blank space is used to represent

the solid tube wall above the plane of symmetry on

the x axis. Displayed schematically in the figure are

some representative grid points. A shock wave is
created by the sudden removal of a diaphragm at

the lip of the tube which separates a compressed
fluid in region 2 inside the tube from the surround-

ing stagnant fluid in region I. The initial conditions
are described by

Pl = 1/1.4, Pl = 1.0, Ul =0.0, Vl =0.0 (10)

P2=2.443, p2=2.28, u2=0.982, v2=0.0 (ll)

The 2-D Euler solver with e = 0.5 and c_ = 1

is used to compute the flowfield with At = 0.0025

on a mesh of 49x97 grid points. The nonreflective
boundary condition is set at the inlet, outlet, and

upper boundary of the computational domain, while

the reflective boundary condition is set on the x axis
and at all tube walls.

Qualitative agreements between computed and

measured positions of the vortex center (estimated

from Fig. 15 of Ref. 15) at six time levels are
revealed in Fig. 10. A quantitative comparison is

not feasible due to the fact that the experiment was

performed in an axisymmetric configuration whereas
the computation was in 2-D. However, at an early

stage the measured vortex positions are correctly

predicted by the 2-D code.
The velocity vector fields at six time levels are

plotted in Fig. ll to show the formation and move-
ment of both the vortex and blast wave. The vortex

can be recognized by its characteristic revolving flow
pattern and the blast wave is represented by a shal-

low banded curve. The computed flow features can

be detected in photographs taken at different time
steps. 1_ Our numerical results with 4753 grid points

uniformly distributed in the computational domain

are comparable to those reported in Ref. 15 based on

a finite volume method containing 7377 cells, with

much smaller cells densely distributed in the neigh-
borhood of the tube exit..



After this test,the 2-Dblastflowfieldgenerated
bythesameinitialconditionsissimulatedto further
testtherobustnessof thepresentEulersolver.The
computationaldomainis enlargedto -1 < x < 3
and0 _<y < 3, which is the same as that of the
axisymmetric flowfield simulated in Ref. 15. The

boundary conditions are the same as those described

previously except the upper surface is now replaced
by a solid wall. The reflection of the blast wave from

the upper surface causes additional flow phenomena

that were not observed in the experiment.

To show the time history of flow development, nu-
merical solutions at eight time levels obtained us-

ing 161x121 grid points are shown in Figs. 12 and

13, in which the pressure and density contours rang-
ing from 0 to 5.88 with a constant interval of 0.049

are plotted. The sequential plots reveal that as the

blast wave initiated from the open end of the shock

tube propagates away, a vortex is developed at the
lip of the tube wall, which moves downstream with

an ascending motion. When the blast wave reaches

the upper wall, it is reflected as shown in the plot
at t=l.0 msec. In the meantime on the tube axis a

normal shock is formed ahead the vortex and is mov-

ing slowly in the downstream direction, while a jet
shear layer is created at the lip of the shock tube. At

t=l.5 msec, the portion of the blast wave that is re-
flected from the upper wall is shown to move toward

the vortex. After passing the vortex, the blast wave

becomes curved and keeps moving forward to inter-

act with the normal shock as shown in the plots at
t=l.7 msec. At t=l.9 msec, the flow pattern reveals

that as a result of the interaction, the blast wave is
broken into two parts while several new vortices are

created. More complex flow patterns are shown at

t=2.1 and 2.3 msec, describing further reflection and
interaction of shock waves and vortices.

Despite the difference between 2-D and axisym-

metric configurations, the computed flow fields agree

extremely well with those shown in the shadowgraph
pictures of Ref. 15 at early time steps of t=0.1996
and 0.4937 msec. An axisymmetric Euler solver

based on the CE/SE method is being developed,

which will be used to simulate the realistic exper-
imental flow conditions.

3. Conclusions

The l-D, quasi 1-D and 2-D Euler solvers have

been validated using test problems. Numerical ex-

amples have been used to compare the CE/SE Euler
solvers with established schemes such as the TVNI

schemes designed by Harten, the upwind schemes
used by Woodward and Colella, and others. It has

been demonstrated that tile present Euler solvers

can generate highly accurate numerical solutions

without requiring any special treatments for flow dis-
continuities, such as the inclusion of artificial viscos-

ity, blending of low- and high-order-accurate fluxes,
the use of nonlinear solution to Riemann's prob-

lem as suggested in Ref. 10, or the TVD property

used in Ref. 15. Its inherent features of simplicity,
generality and accuracy indicate that, with further

improvements, the space-time conservation element

and solution element method may be developed to

become a versatile tool for solving general fluid dy-
namic problems.
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Fig. 8 Density contours for flow over a step at t=4
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Fig. 9 Grid distribution in the blastfield
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Fig. 11 Velocity vector plots at early times
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Fig. 12 Pressure contours at eight time levels

3.0

2.5

2.0

1.0

0.5

0.0

- [.|

(a)t-0.1998 msec

r-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

-1,0-0.5 0.0 0.5 t.O t.5 2.0 2.5 3.0

X/D

3.0

2.5

2.0

1.5

1.0

0.51

0.01

..........,,, ,t/t-i-i

-1.0-0.5 0.0 0.5 l.O 1.5 2.0 2.5 3.0

X/D

::"........  l!IJll
1.5 I

1.0 k,,,--_ ,_

0.5 ,_/_

0.0

-!.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/D

3.0

2.5

2.0

1.5

|.0

0.5

0.0

(b)t-0.4937 msec

-1.0-0,5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

3.0

2.5

2.0

1.0

0.5

0.0

-I.D-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

_-_ 1.5
>.

3.0

2.5

2.0

1.5

1.0

0.5

O0

-I.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/o

3.0 " ' " ' ' ....

2.5

2.0

1.5

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 l.O 1.5 2.0 2.5 3.0

X/D

lO



Fig. 13 Density contours at eight time levels
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